
UnrlaRq1 flRd
1ECURItY CLASSIFICATION OF THIS PAGE R TM AG

FREPORT DOCUMENTAIION PAGE

Ia. REPORT SECURITY l Aqr rnATin lb. RESTRICTIVE MARKINGS

3. DISTRIBUTION / AVAILABILITYUIcR"IL Copy
AD-A228 961Unlimited

.S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

TR-90-1167

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

(If applicable)

Cornell University Office of Naval Research

6c. ADDRESS (City, State, and ZIPCode) 7b. ADDRESS (City, 'State, and ZIP Code)

Department of Computer Science 800 North Quincy Street

Upson Hall, Cornell University Arlington, VA 22217-5000
Ithaca. NY 14853

8a. NAME OF FUNDING/SPONSORING 8 b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

ORGANIZATION (If applicable)

Office of Naval Research IN00014-86-K-0092
8c. ADDRESS (City, State. and ZIP Code) 10. SOURCE OF FUNDING NUMBERS

800 North Quincy Street PROGRAM PROJECT TASK WRUNO

Arlington, VA 22217-5000 ELEMENT NO NO. NO. IACCESSION NO

i. TITLE (Include Security Classification)

Progress Measures for Verification Involving Nondeterminism

12. PERSONAL AUTHOR(S)
Nils Klarlund and Fred B. Schneider

13a. TYPE OF REPORT 113b. TIME COVERED 1.DTOFRPT(eaMn.Dy)1.PAGE COUNT

Interim I FROM TO 1990 October 30 P19

'6. SUPPLEMENTARY NOTATION
4 -.A/

17. COSATI CODES 18. SUBJECT TER S (Continue on reverse of necessarfand identify by block number)

FIELD GROUP SUB-GROUP concurrent program verification, progress measures,

safety properties, infinite-state automata

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

;-Using the notion of progress meas'ures, we give a complete verification method for

proving that a program satisfies a property specified by an automaton having bounded

nondeterminism. Such automata can exIpress any safety property. Previous methods, which

can bL derived from the method present"d here, either rely on transforming the program

or are not complete. ' - D T:CDTIC
ELECTEI_~O !qNO0V 2 0 1990

20. DISTRIBUTION /AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
DLUNCLASSIFIEDAJNLIMITED 0 SAME AS RPT. 0 DTIC USERS

22a NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code) 22c, OFFICE SYMBOL

Fred B. Schneider • (607) 255-9221 I
DO FORM 1473, 84 MAR 83 APR edition may be used until exhausted. SECURITY CLASSIFICATION OF THIS PAGE

All other editions are obsolete.

Progress Measures for Verification Involving

Nondeterminism

Nils Klarlund1 and Fred B. Schneider 2

October 30. 1990

Abstract

Using the notion of progress measures, we give a complete verification

method for proving that a program satisfies a property specified by an au-

tomaton having bounded nondeterminism. Such automata can express any

safety property. Previous methods, which can be derived from the method

presented here, either rely on transforming the program or are not complete.

1 Introduction

Nondeterministic automata are a convenient mathematical abstraction for pro-

grams and specifications that define infinite sequences of events [Arn83, Par81,

Sis89b, Var87]. A program is modelled as an automaton A,, called the program

automaton, which accepts a language L(Ap) of infinite behaviors (words); a spec-

ification is modelled as an automaton As, called a specification automaton, which

accepts the language L(As). Ap satisfies As if every behavior of Ap is allowed by

As; that is, if L(Ap) _ L(As).

In this article we describe a new method for verifying that L(Ap) _ L(As).

Our approach is based on the notion of progress measure, introduced in [Kla90]. A

progress measure p for establishing L(Ap) _ L(As) quantifies how a behavior of

Ap converges towards a behavior that would be accepted by As. This convergence

is characterized by using a progress relation tIs (which depends only on As) and

is established by proving the verification condition:

'Supported by grants from the University of Aarhus, Denmark, the Danish Research Academy,
and the Thanks to Scandinavia Foundation Inc.

Current address: IBM T.J. Watson Research Center, PO BOX 704, Yorktown Heights, NY
10598

2Supported in part by the Office of Naval Research under contract N00014-86-K-0092, the
National Science Foundation under Grant No. CCR-8701103, and Digital Equipment Corpora-
tion. Any opinions, findings, and conclusions or recommendations expressed in this publication
are those of the authors and do not reflect the views of these agencies.

Current address: Department of Computer Science, Upson Hall, Cornell University, Ithaca.
New York 14853

1

For any transition in Ap from state p to p' emitting symbol e, y(p) t>'

,u(p') holds.

(In addition, some technical conditions relating the initial states of At and As

must hold.)

A verification method based on progress measures for proving L(Ap) C L(As)

is sound if the existence of a progress measure implies that L(Ap) C L(As) holds.

In that case, whenever po, piI...• is a run over a behavior eo, e,... in L(Ap), 3 the

t>-related sequence '(po) t> p(p 1) t> ... (whose existence is guaranteed by the

verification condition above) gives rise to a run of As over e0 , el,... A method is

complete if such a p is guaranteed to exist whenever Ap satisfies As.

In this paper we describe some progress measures and corresponding verification

methods. The progress measures that we call the refinement measure, the prophecy

measure, and the history measure form the basis for the verification methods pre-

sented in [Mer89, Lam83, LT87, Par8l, Sis89a, Sta88]. A new progress measure,

called the ND measure, yields a new sound and complete verification method for

specifications defined by safety automata, infinite-state automata with bounded

non-determinism. Such automata can express any safety property,4 but cannot

specify liveness properties [AL88, Kla90. Thus, this paper describes the use of

progress measures to derive a new verification method as well as their use to bet-

ter understand the power and limitations of existing methods.

The remainder of the paper is organized as follows. In Section 2 we describe

some simple progress measures, consider how they might be used in a verification

method, and explain why the resulting methods are incomplete. Section 3 discusses

properties of refinement, prophecy, history, and ND progress measures. Then

Section 4 explains how to reformulate verification methods from the literature

for safety properties in terms of these progress measures. Section 5 relates our

approach to recursion theory. Section 6 contains a summary.

2 Motivation

In this section we consider some candidate progress measures for showing that

L(Ap) _ L(As) holds. This leads to a proof that there can be no sound and

3A run of an automaton is a sequence of automaton states corresponding to a behavior ac-
cepted by that automaton.

4 Informally, a safety property is one stating that some "bad thing" does not happen. Formally,
a safety property is a closed set [AS85].

2

complete verification method based on a progress measure that maps states of Ap

either to states of As or to sets of states of As.

2.1 Definitions

Let E be a fixed (at most) countable alphabet of symbols called events (repre-

senting actions, communications, or observable parts of states). A behavior is a

sequence (infinite if not otherwise stated) e0 , el,... of events. Let V be a set of

states. A transition relation on V is a relation -- C V x E x V, where a transition

(v, e, v') C -+ is denoted v _5, v'. An automaton A = (7, V, -- , V °) consists of an

alphabet E, a state space V, a transition relation -- on V, and a set of initial states

V0 C V. A run of A over a behavior e0 , el,... is an infinite -*-related oequence

of states vo - v, --- with Vo E V0 . A behavior e0 , el,... is accepted by A-or is
a behavior of A-if there is a run of A over eo, el,... The language or property

L(A) accepted by A is the set of behaviors of .4.

Automaton A is complete if V $ 0 and every state v E V appears in some run.

Note that a complete automaton accepts a non-empty language. Moreover, from

every automaton A = (E, V, --- , V0) such that L(A) # 0, it is possible to obtain a

complete automaton A' such that L(A') = L(A) by deleting from V those states

Lhat do not appear in any run. This procedure, however, is not computable., since

it requires deciding whether there is an infinite path from a node in a graph-

something that is EI-complete for countable recursive graphs [Rog67].

Denote by v V u v' that there exist vo, ... , v,, such that v = v-
. . v+ = v', where u = eo,..., e, is a finite behavior. Similarly, v 'a

will mean that there exist vo, vi,... such that v = vo - 1 - .-. , where w =

eo, el,... is an infinite behavior. A state v is reachable over u if there is some

v° E V0 such thatv ° 0 - - v.
In what follows, we consider a program automaton Ap = (E, Vp, -*p, Vp) and

a specification automaton As = (E, Vs, -'s, VoS).

2.2 Incompleteness of Refinement Measures

To define a verification method, we first consider the use of a progress measure p I

that maps each state of Ap to a single state of As. This approach is plausible,

for whenever there is a run of Ap over some behavior eo, el,..., there must be a n

corresponding behavior of As over eo, el More precisely, the method consists

of finding y, called a refinement measure, that satisfies two criteria:

3 1 :.t S 'Ial

Definition 1 A refinement measure yu for (Ap, As) is a mapping pu : Vp

such that:

(REplI) pEVp' p*I(p) EVS

(REMz2) p -+p p' =p/(p)-sp(p')

Verification condition (REpL1) states that y' maps any initial state of Ap to an

initial state of As, and (REAs2) states that for every transition p -+, p of AP

there is a transition p(p) -- s p(p') of As. It is not hard to see that together

these verification conditions imply that any behavior of Ap is a behavior of As:

let eo, e1,... be a behavior of Ap; then there is a ran po -2 p p, -%1 "" of Ap, and
from (RE~Il) and (RE12) it follows that tp(po) - sy(pj) -s ... is a run of As.

Unfortunately, refinement measures do not yield a complete method for non-

deterministic automata. Even for finite-state automata Ap and As such that Ap

satisfies As, a refinement measure may not exist. To see this, assume that Ap

satisfies As and that this can be proved by some refinement measure ji. Consider

the situation:

U W/

W I O

'I
Stso< U WI

where states p of Ap and a', of As are all the states reachable over some finite

u. Also assume that there exist w' and w" such that u. w' and u wit are different

behaviors. Suppose that PO,.. .p, p, p,... . is a run of Ap over u - w' and that
POT.pt po' is a run over u w". Thus pa(po),...,.z(p),p(pO'),is(p),... must

be a run of As over u. w' and p(po),..., y(p), A(pg),(p '),..• must be a run of

As over u • w", because Ap satisfies As. However, this is impossible because for

u • w', it must be the case that pt(p) = s', and for u • w", it must be the case that

/1(p) = s".

2.3 Incompleteness of Measures Mapping to Sets of States

To avoid the incompleteness inherent in refinement measures, we might consider a

progress measure that maps program states to sets of specification states. For the

4

situation above, we would define p(p) = {s', s"}, where the set {s', s"} is called a

prophecy set,' because it predicts that either s' or sit is the state of the specification

automaton corresponding to p.

Unfortunately, even a method based on mapping program states to sets of

specification states cannot be complete. For example, if we employ prophecy sets.

a problem arises when a state p of Ap can be reached by different behaviors, each
giving rise to a different set. Two such sets, corresponding to finite behaviors u

and v, are depicted below:

aV

V

It turns out that a complete method must distinguish between such prophecy sets.

To see more formally that no method based on progress measures that map to

sets of specification states exists, consider an automaton As given by

where both states 1 and 2 are initial states. The behaviors defined by As are

the sequences that consist of either a's and b's or a's and 's (i.e. the w -regular

language (a + b)W tU (a + C)). We first show that there can be no progress relation

i's on Vs = {1, 2} yielding a reasonable verification method. Such a method
would satisfy two criteria:

i. Co i, C1 Ls C2 b'" ", where Co, Cl,... are sets of specification states,

5The notions of pronphec and hitorh are from [AL88 .

5

then there are so E Co, s1 E Ci.... such that so -%4 s, -s ... is a run of As.

ii. If L(Ap) C L(As) then a progress measure p exists such that a state s need

only be in M(p) if there is a u such that both p and s are reachable over u

and for some infinite behavior w, u • w is allowed by As.

Criterion i must hold for the method to be sound; note that there need not be any

condition on CO with respect to initial states, because both states of As are initial.

Criterion ii is an assumption that if L(Ap) C L(As), then a progress measure '

exists such that /(p) only contains states that actually occur in runs of As when

p occurs in a corresponding run of Ap.

Our proof that there is no complete verification method based on a progress

relation t>s satisfying the criteria involves two programs. The first is Ap,

b

b

Sc c

where state b is the initial state. There are two infinite behaviors of Apl, namely

b, b, b,... and c, c, c,..., i.e. Ap1 satisfies As. Thus since we assume that the hy-

pothesized method is complete, there must exist a progress measure p. By Cri-

terion i, p(6) must contain state 1, because 6 -b + b -b ... is a run

of Ap1 and the only corresponding run of As is 1 - 6s 1 -b- Similarly, ji(6)

must contain 2, M(0) must contain 1, and M(y) must contain 2. By Criterion

ii, 1L(fl) does not contain 2, and g(-j) does not contain 1. Thus p(6) = {1,2},

A(O) = {1}, and p(y) = {2}. Since 6 , b +,1 3 -"b b "'" is a run of Apl.A b)I'U0 b $'0)b ..
(6) > t> must hold. In particular, {1,21 ts {1 must hold.

By an analogous argument, {1,2} s {2} must hold.

The second program is Ap 2

6

b Qa

7

whose initial states are 3 and y. The behaviors of this program are b, a, a, a....

and c, a, a, a,... Thus Ap 2 satisfies As. By arguments similar to those above.b

A(3) = {1}, M (y) = {2}, and p(6) = {1,2} hold. Thus {1} >s {1,2} and

{2} >cs 11,2} must hold.

From Ap, and Ap 2 , we conclude that there is a sequence {1,2} c>s {2} c>s

(1, s {2} ts {1,2} s However, this contradicts Criterion i because AS

does not allow the behavior c, c, b, b, c, c, b, b,....

3 Measures for Nondeterministic Automata

We now develop verification methods for establishing L(Ap) g L(As) by means of

progress measures. In particular, we introduce the ND progress measure and define

the simpler refinement measure, prophecy measure, and history measure along the

way. We also give necessary conditions for these measures to constitute complete

verification methods.

The following definitions will be required. For an automaton A, the set of

states reachable over e,... , en is denoted TZA(eo,..., e,). Note that RA() = V°.

A transition relation -+ has bounded nondeterminsm if for all e E E and all v E V.

the set {v'j v -!+ v'} is finite. Automaton A = (E, V, --+, V °) is a safety automa-

ton if V0 is finite and --- has bounded nondetermiism. And, if V° and all sets

{v' Iv -4 v'} have at most one element, then A is deterministic. Observe that if

A is deterministic, then for all eo,... , e,,, the set TZA(eo,... , e,,) has at most one

element. If for all v in V there is at most one finite behavior eo,.. . , e, such that

v E "€A(eo,... , e,.), then A is historical; the intuition is that each state corresponds

to at most one finite behavior or history leading up to that state.

3.1 Refinement Measure

By imposing restrictions on Ap and As, a complete verification method based on

refinement measures can be obtained:

7

Proposition 1 Let Ap historical automaton (assumed complete according to the
discussion in Section 2.1) and let As be a deterministic automaton. Then, L(.4p)

L(As) if and only if (Ap, AS) has a refinement measure.

Proof "=" (Soundness) Argument was given in Section 2.2.

"'." (Completeness) Let pE Vp. Note that:

" By the assumption that Ap is complete, there is a finite behavior e0 e,

such that pE 7ZA (eo,... ,e), and by assumption that Ap is historical, this

behavior is unique.

" Since Ap is complete, there are en+l, e+2,.., such that eo, ee,... E L(Ap),

whence, by the assumption that L(Ap) _ L(As), I"As(eo,... , e.) 0 0.

" Since As is deterministic, IZA(e,..., en) has at most one element.

Thus we can define p(p) = s, where {s} = "ZAs(eo,...,e,,) and e0 ,... ,e n is the

unique finite behavior such that pE RA,(eo,. . . ,).

Since Ap is historical, there is a single initial state p0 , and by the definition of

y, j(pO) = so, where s o is the single initial state of As; thus (RE/11) is satisfied.

To see that (RE/u2) holds, let p, e, and p' be such that p 24, p'. Then p is reach-

able over a unique finite behavior eo,. . . , e,,. Thus p' is reachable over the finite be-

havior e0 ,..., en, e. It follows that lZAs(eo,..., en) = {s} and lAs(eo,. en, e) =

{s'} with s -!. s'. Thus s = 11(p) -- s tl(p') = s'. 0

3.2 Prophecy Relation and Measure

By imposing restrictions on Ap and As, a complete method based on mapping
program states to prophecy sets can be obtained. For this method, if p is a program

state reachable by eo,... , e,, o(v) is a set of specification states reachable by

e,..., e,. Hence on a transition p -_, p', the value of the progress measure
,v should change so that every s'E A(p') is reachable. This can be assured by
requiring that to every state s' in IA(p') there corresponds a state s in A(p) such

that a -' s'. Thus we define:

Definition 2 The prophecy relation t. of a transition relation - on V, is the

transition relation on PV given as: 6

(L) ' S' if Vs'E "3sES: 8 s'

An infinite t>-related sequence of non-empty finite sets gives rise to an infinite
---+-related sequence of states:

Lemma 1 (Prophecy Relation Lemma) If So 0 ... and S, 0 is finite for
all i, then there exists a sequence so sl --" with si E S, for i > 0.

Proof Construct a forest as follows. Each node is of the form so --- -- s,,

such that si E Si for i < n and s, 2 s,+1 for i < n; in particular, the roots are

elements of So. The edges are of the form
(S o e. -1 e(_o - -. S n , S O - *- ..n l

Since Si is finite, the forest is a finite collection of finitely branching trees. Theo e i

forest is infinite, because for all n, it follows from So eo S, " " and S, # 0
that there are some So,..*, sn such that so sn is a node. Hence by
K~nig's Lemma, there is an infinite path through one of the trees. This path de-

fines so st - ... E

A prophecy progress measure maps each program state to a finite set of speci-

fication states:

Definition 3 A prophecy measure ui for (Ap, As) is a mapping jA : Vp --+)7Vs

such that:7

(PRI1) pEV =A i(P) _ V

(PRIA2) _--_p'+ p)a('

(PRjA3) j,(p) #0

where tz, is the prophecy relation of -"s.

Prophecy measures give a sound and complete verification method for historical
program automata and safety specification automata:

6'PV denotes the set of all subsets of V
7F V denotes the set of all finite subsets of V

9

Propo-l-'on 2 Let Ap be a historical automaton (assumed complete) and let

.4, a safety automaton. Then. L(Ap) C L(As) if and only if (Ap. As) has a

prophecy measure.

'" Assume that (Ap, As) has a prophecy measure u. Let Po "-op p, -el "" be a

rin of.4p. By (PRi2), u(po) t **-, and by (PRp3), U(p,) # 0 for i > 0.P) " 0o el

We can use the Prophecy Relation Lemma to obtain a sequence so -'S si -s
where so E/M(po). By (PRaI), soE u(po) C V', whence o -s so s is a run

of As.

"=:>" Assume L(Ap) C L(As). Define p(p) = lZ.(eo,..... en), where eo.. fn

is the unique finite behavior such that pE lZAp (eo,.e n); by the assumption

that Ap is complete, there is a sequence eo.,.. . en, and by the assumption that

Ap is historical, this sequence is unique. By the assumption that .4S is a safety
automaton, /(p) is finite.

Since Ap is complete, there are e,,+i, en+2,... such that e0 , el.... E L(Ap).

Since L(Ap) C L(As), lZA,(eo,..., e,) # 0. Hence for all p, p(p) is nonempty, i.e.

(PRIA3) holds.
By the assumption that As is historical, there is a single initial state pO. and

by the definition of /, /p(p0) = VSO; thus (PR/s1) is satisfied.

Finally to prove that (PRu2) holds, let p, e, and p' be such that p -- p p'. There

is a unique finite word eo, ... , e,, such that pE Zp(eo, ... , e,,). Define

S' = {s'l 3s E (p): s s').

It can be seen that S' = lZA,(eo,. .. , e, e) = ji(p'). By definition of the prophecy

relation, y(p) e,,IA(p), whence (PRp2) holds. 0

Note that the proof of the "=>" direction does not depend on any assumptions

about Ap or As.

It follows from the discussion in Section 2.2 that the method of prophecy mea-

sures is not complete if the restriction that Ap be historical is removed. In the

next section, we overcome this limitation by instead imposing a further restriction

on the specification automaton.

3.3 History Relation and Measure

Assume now that L(Ap) C L(As) and that specification automaton AS is de-

terministic. Consider a program state p. It can be reached by different finite

behaviors. Let the progress measure p(p) be the history set--the set of specifica-

tion states that are reached by these finite behaviors (there is one such state per

10

behavior because As is deterministic). On a transition p .', p, and for each state

s E p(p). there must be a state s' Eu (p') such that s --"s s'; this ensures that every

partial run (history) of As can be extended. Thus we define:

Definition 4 The history relation q of a transition relation --- on V is the tran-

sition relation on PV given as:
e e ,

(tHeC C if s EC:3s'E C': s- s'

The history relation of - has the following property:
10

el

Lemma 2 (History Relation Lemma) If Co t>HI C > . then for all So E Co, theree0 e

exists a sequence such that so -e* s, -% -". with si E Ci for all i.

Proof Let so be any state in Co. Then by definition of t , there is a state s, in
C1 such that so -_ sj. By iterating this argument, we obtain so --- s ... such
that for all i, si E Ci. CD

A history measure maps a program state to a possibly infinite set of specification
states:

Definition 5 A history measure pi for (Ap, As) is a mapping p : Vp -+ P1 's such

that

(HIpi) pE Vo = 3sE j(p) : sE V'
(HIp2) p --'+ p' = A(p) &>, IA(P')

where t>. is the history relation of --

History measures give a complete verification method for deterministic specifi-
cation automata:

Proposition 3 Let Ap be an automaton (assumed complete) and let As be a de-
terministic automaton. Then, L(Ap) g L(As) iff (Ap, As) has a history measure.

Proof "€" Let po Mp/p --4 P... be a run of Ap. By (HIpi) there is an so E p(po)
eo e

such that so E V°0. By (HIp2), A(po) t>. (p') >,.•.. Thus by the History Relation

Lemma, there is a run so -%s s, 4 ... of As.
":*" Assume L(Ap) 9 L(As). Define p(p) = UPEZAp(eO ..) IZAs(eo, . . " ,en),

where the union is over all finite behaviors eo,..., e, such that pE lZA,(eO,. .. en),

To prove (HII), let pE Vjo. Note that lZA5 () contains the initial state so of
As because Ap is complete. Since pE IZAp, it follows that IZAs() 9 A(p); thus
so E A(pP).

11

To see that (HIp2) holds, let p, e, p', and s be such that p p' and

sEJ2(p). Thus there is a behavior eo,...,en such that sEZ4ZA(eo...e,) and

pE1Z.4p(eo..... en). Since As is deterministic, lZAs(U) is the singleton {s}. It

follows that lZAs(eo,.. .,e,,, e) is a set {s'} such that s As s' and that s'E g(p').

because p' E T4a,(e,...,e, e). Thus (HIui2) holds. C

According to the results of Section 2.2, history measures do not constitute a com-

plete verification method for nondeterministic AS.

3.4 ND Relation and Measure

We have discussed progress relations that give complete methods for two special

cases above: prophecy relations when Ap is historical and history relations when

As is deterministic. Our solution to the general case consists of combining these

relations: the ND progress relation is the history relation of the prophecy relation.

Definition 6 The ND relation t. on 7P.FV of a transition relation -+ on V is

defined as:

C N C' if VS E C : 3S' E C':

V E S' : 3s E S: Ss -- s'
An immediate consequence of the two preceding lemmas is:

o Cl

Lemma 3 (ND Relation Lemma) If Co eD C1 t>N,'", So E Co, and 0 C, for all
i, then there is a sequence so -0 s !4 ... with so E So.

Co ~e
Proof As So E Co and as Co I>. C1 t..", there is by the History Relation Lemma

co el

sequence So ta S t ... with Si E Ci.

Moreover since 0 j Ci, i.e. Si # 0, and since Si is finite for all i, it follows by

the Prophecy Relation Lemma that there is a sequence so -% si -4 ... such that

SoE SO. 0

An ND measure p associates with each program state a (history) set of (prophecy)

sets of specification states:

Definition 7 An ND measure p for (Ap, AS) is a mappingu : Vp --+ P.FVs such

that

(NDul) pEVp, =o 3SE ,(p):SCV

(NDM2) p -ep p' =; p(p) p(j)

(ND, 3) 0 1 p(p)

Our main result is:

12

Theorem 1 Let Ap be an automaton (assumed complete) and As a safety au-

tomaton. Then, L(Ap) C L(As) if and only if (Ap, As) has an ND measure.
eo eo

Proof "=" Let po '0 pI -'* P .be a run of Ap. By (NDus2), /'(po) e -,D'1(P1)eth. D

and by (NDpI), there is a set So E I(po) such that So g Vs. Thus by (NDMi3)

and the ND Relation Lemma, there is so 4s si £hs .-. such that so E So C VS'.

Therefore so -e', s, --- "'" is a run of As.

"=." Assume L(Ap) _ L(As). Define p such that S E y(p) if and only if there is

a finite behavior eo,..., e, such that pE "ZAp(eo,..., e,) and S = lAS(eo,..., e,).

By the assumption that Ap is complete, there is for any such behavior eo, ... , e,. a

sequence en+1, e+2,.., such that eo, el,... E L(Ap). Thus since L(Ap) C L(As),

it follows that IZAs(e,... , e,,) $ 0. Hence for all p, z(p) is a set of nonempty sets,

i.e. (ND3) holds.

To prove that tz satisfies (ND/i), assume that pE Vp. By the definition of y,

for all p0 E Vjo, it holds that V E p (p0), whence (NDjs1) is satisfied.

To prove that (NDp2) holds, let p, e, and p' be such that p --+,, p' and let

S E p(p). Thus there is a finite behavior eo,. .. , en such that pE lZA,(eo,..., en)

and S = ,As(eO,..., e). Define

S' = {s' I33 E S : s-4 s'}.

It can be seen that S' = TZAs(e,... , e,,, e) E p(p'). By definition of the prophecy

relation, S &,, S', whence (NDp2) holds. 0

4 Derivation of Previous Methods

In this section we derive from our ND measures Abadi and Lamport's method [AL88]

as applied to safety properties. We also show how to obtain the verification method

of Merritt [Mer89] and Sistla [Sis89a].

Formulated in our terminology, the goal of [AL88] is to show L(Ap) _ L(As)

by means of a refinement measure. This is done by adding history and prophecy

information to the program automaton before the refinement mapping is con-

structed. This information is such that one can verify locally that the language

L(Ap) accepted does not shrink when it is added. The main result of [AL88]

is that L(Ap) _ L(As) if and only if there is an automaton Ap,,--obtained by

adding first history, then prophecy information to Ap-and there is a refinement

measure of (A,,, As). The work in [Mer89, Sis89a] represents what can be re-

garded as an intermediate approach between ours and that of [AL88]. Both [Mer89]

13

and [Sis89a] rely on modifying the program automaton and using a prophecy mea-

sure: L(Ap) _ L(As) if and only if there is an automaton Ap,-obtained by adding

history information to Ap-and there is a prophecy measure of (Ap,, AS).

4.1 Adding History Information

Using ND measures, we can derive the method of [Mer89, Sis89a] as follows.

Definition 8 We say that Apt = (E, Vp,, --v,, Vp,) is obtained from Ap by adding

history information if Vp, g Vp x I-with I countable-and

(HIR) p E V = - 3i: (p, i) E V,

(H12) p-p p' A (p,i) EVp, =- 3i':(p,i) (p',i')

Note that (HI1) and (H12) are equivalent to saying that p defined by pi(p) =

{ (p, i) E Vp,} is a history measure for (Ap, Apt). Also observe that Apt is not
necessarily a complete automaton or a safety automaton, even if Ap is.

Proposition 4 If Apt is obtained from Ap by adding history information, then
L(Ap) 9_ L(Ap,).

Proof As noted above, p = {(p, i) E Vp,} is a history measure for (Ap, Apt). Thus

by Proposition 3, L(Ap) C L(Ap,) holds. C

The method of [Mer89, Sis89a] now follows from Theorem 1:

Corollary 1 (of Theorem 1) Let Ap be a complete automaton and let AS be a

safety automaton. Then, L(Ap) 9 L(As) if and only if there is an automaton

Ap,--obtained by adding history information to Ap-and there is a prophecy

measure for (Apt, As).

Proof "=" By Proposition 4, L(Ap) g L(A.,), and by Proposition 2, L(Ap,) g

L(As).

"=" By Theorem 1 there is an ND measure for (Ap, As). Let I = .Vs,

Vp, =(p,S)ISEpm(p)), Vp, = {(p,S)EVpIPE V,S C VO}, and (p,S) .4,.'
(p', S') if p - 4 , p and S &Pa S'.

Apt is obtained from Ap by adding history information. In fact, (HI) is

satisfied, because if pE Vp, then by (NDpl) there is a S E p"(p) such that S C V],
thus (p, S) E Vp,. Similarly, (H12) follows from (NDu2).

To finish the proof, we define the prophecy measure for (Apt, As) as V(p, S) =

S. Then (PRpI), (PRA2), and (PRp3) can be shown to hold. C

14

The completeness proofs of the methods in [AL88, Mer89, Sis89a] rely on chang-

ing Ap to an infinite-state automaton by adding information that records the past
history of states. In contrast, the analysis above shows that if Ap and As are

finite-state, then Ap, can be chosen to be finite-state; for in the proof of Corol-
lary 1, the number of different history sets is finite when Vp is finite. In light
of this observation, the concepts of history measure and history information are
a bit misleading. Distinguishing among histories of the program automaton is
not a cardinal point-what matters is to distinguish among prophecy sets of the

specification automaton.

4.2 Adding Prophecy Information

To obtain the verification method of [AL88], we define:

Definition 9 Ap, = (E, Vp,, V,, -'') is obtained from Ap by adding prophecy

information if Vp, C Vp x I-with I countable-and

(PRI) pEV' A (p,i)E Vp, = (p,i)EVp,

(PR2) p -4p p' A (p, i') E Vp, * 3i : (p, i) -!, (p', i')

(PR3) 0 0{iI(p,i)EVp'} is finite

Requiring (PRI), (PR2), and (PR3) is equivalent to stating that A defined as

A(p) = {(p, i) E Vp,} is a prophecy measure of (Ap, Ap,). Also observe that Ap, is
not necessarily a safety automaton nor is it necessarily complete, even if Ap has

these properties.

Proposition 5 If Ap, is a safety automaton obtained from Ap by adding prophecy
information, then L(Ap) _ L(Ap.).

Proof Follows from Proposition 2 and from the observation above that A4(p) =

{(p, i) E Vp,) is a prophecy measure of (Ap, Ap,). 0

A version of Theorem 2 of [AL88] follows from Theorem 1:

Corollary 2 (of Theorem 1) Let Ap be an automaton (assumed complete) and
let As be a safety automaton. Then L(Ap) g L(As) if there is a safety automaton

Apu-obtained by adding first history, then prophecy information to Ap-and
there is a refinement measure for (Ap, As).

Proof "4-" By Proposition 4 and Proposition 5, L(Ap) L_ L(Ap,,). Moreover, it
is easy to see that every run of Ap,, induces a run of As; thus L(Ap) _ L(Ap,,) C
L(As).

15

"" Assume L(Ap) _ L(As). By Theorem 1 there is an ND measure p of

(Ap, As). Let Ap, = (E, Vp,, --+p,,, Vp,,), where ',p,,, Vp,, C V, x (Vs x Fls) are

given by:

Vp,, {(p,s,S) IsESEp(p)}

,, = {(p,s,S) sESe A(p) A pEVp A SC VS0}

and (p, s, 5) -,p,, (p', s', S') if p -', p', s k' s', and S S.

Then it is not hard to see that Ap, is obtained by adding prophecy informa-
tion to Ap, from the proof of Corollary 1. Also, it can be seen that le defined by

jir,(p, s, S) = s is a refinement measure. 13

5 Discussion

Our verification methods hinge on two restrictions: that the specification automa-

ton has only bounded nondeterminism and that the program automaton is com-

plete. The restriction to bounded nondeterminism is also imposed in previous

methods. As discussed in [Sis89b], there are recursion-theoretic arguments show-
ing that there does not exist any reasonable verification method for automata

having unbounded nondeterminism.

The restriction to complete program automata is also rooted in the laws of

recursion theory. Just to determine if an effectively presented nondeterministic

automaton defines the empty set (i.e. that it has no infinite runs) is II-complete.

because there is a reduction from the II-complete problem of determining whether

an effectively represented tree has only finite paths. On the other hand, all the

methods described here involve a second order existential quantification; i.e. each

method is of the form: L(Ap) g L(As) if and only if there is a relation R such
that some first-order conditions hold.8 Thus the methods are essentially E and

therefore cannot possibly be used for the general problem L(Ap) g L(As), where

Ap is nondeterministic and As is a safety automaton.

One can lower the computational complexity by reformulating the verification
problem. We say that Ap simulates As if each finite and infinite behavior of Ap

is a behavior of As. Paradoxically, the problem of determining whether nondeter-

ministic Ap simulates safety automaton As-something that looks stronger than

'An ND measure p can be defined by SE p(p) if and only if R(p, #S), where #S is a number
encoding the finite set S.

16

L(A) g L(S)-is computationally much easier. In fact it can be shown that this

problem is II°-complete.

Thus in order to avoid dealing with the rather strange concept of complete

automata, it is not surprising that earlier papers [AL88, Mer89, Sis89a] are con-

cerned with methods for showing that Ap simulates As. Whether one considers
only infinite behaviors or both finite and infinite behaviors, there is no substan-
tial difference in how automata are related-except for the treatment of reachable

program states that are not parts of any run. In the first case they have to be

excluded from consideration, in the second case they matter.

All our results are applicable for showing that Ap simulates As; the only change
is that a measure becomes a partial function, because there may be unreachable

states of Ap. For example, Theorem 1 becomes:

Theorem 1' Let Ap be a nondeterministic automaton and As a safety automaton

(with VSO 5 0). Then Ap simulates As if and only if (Ap, As) has a partial ND

measure.

In the statement of Theorem 1' we define

Definition 7' A partial ND measure u for (Ap, As) is a partial mapping y

Vp--P.FVs such that Vp g domA and for all p, p' E domp:

(NDA1) pEV' =o 3SEu(p):SCVs

(NDA2) p --p p' =o u(p) N>DPj(P)

(NDA3) 0 p

Here the reachable states are defined by domt, which can be identified using
traditional assertional techniques.

The approach of [AL88] is more general than ours in two respects. First, they

show how safety and liveness issues can be separated by using automata that are

equipped with auxiliary liveness properties. Second, stuttering automata are used.

A stuttering automaton is one in which repetition of events is considered a single

event. Stuttering is important when multiple steps of the program automaton

correspond to a single step of the specification automaton. For simplicity we

have not considered this issue here. In [AL891, translations between the method

of [AL88] and our method (originally described in [KS89]) were first outlined.

17

6 Summary

We have described a verification method based on our ND progress measure for

nondeterministic automata. Unlike previous complete methods, ours is direct in

the sense that it requires modifying neither the program nor the specification.

Progress measures also have allowed us to classify the applicability of previous

methods that do not depend on program transformations. According to whether

Ap is historical or not, or whether As is deterministic or safety, the progress

measure indicated below constitutes a sound and complete verification method for
showing L(Ap) C L(As):

As

Ap deterministic safety

historical refinement prophecy
nondeterministic history ND

Unfortunately, the most powerful progress measure, the ND measure, is rather

complex since it maps program states to sets of sets of specification states. This

complexity is inherent in the verification problem. No method based on just map-

ping program states to sets of specification states can be both sound and complete

for nondeterministic automata.

Acknowledgments

We would like to thank M. Abadi, B. Alpern, D. Kozen, L. Lamport, and A.

Zwarico for their very helpful comments on earlier versions of this article.

References

[AL88] M. Abadi and L. Lamport. The existence of refinement mappings. In

Proc. 2. Symp. on Logic in Computer Science. IEEE, 1988. To appear in

Theoretical Computer Science.

[AL89] M. Abadi and L. Lamport. Private communication, November 1989.

[Arn83] A. Arnold. Topological characterizations of infinite behaviors of transi-

tion systems. In Proc. 10th Col. Automata, Languages and Programming,

pages 490-510. LNCS, Vol. 154, Springer-Verlag, 1983.

[AS85] B. Alpern and F.B. Schneider. Defining liveness. Information Processing

Letters, 21:181-185, Oct. 1985.

18

6

[Kla90] Nils Klarlund. Progress Measures and Finite Arguments for Infinite Com-
putations. PhD thesis, TR-1153, Cornell University, August 1990.

[KS89] N. Klarlund and F.B. Schneider. Verifying safety properties using infinite-
state automata. Technical Report TR-1036, Cornell University, 1989.

[Lam83] L. Lamport. Specifying concurrent program modules. ACM Transactions
on Programming Languages and Systems, 5(2):190-222, 1983.

[LT87] N. Lynch and M. Tuttle. Hierarchical correctness proof for distributed
algorithms. In Proc. Sixth Symp. on the Principles of Distributed Com-
puting, pages 137-151. ACM, 1987.

[Mer89] M. Merritt. Completeness theorems for automata. Technical report,

AT&T Bell Laboratories, 1989.

[Par8l] D. Park. Concurrency and automata on infinite sequences. In P. Deussen,

editor, Proc. 5th GI conference, pages 167-183, 1981. In Lecture Notes in
Computer Science 104.

[Rog67] Hartley Rogers, Jr. Theory of Recursive Functions and Effective Com-
putability. McGraw-Hill Book Company, 1967.

[Sis89a] A.P. Sistla. A complete proof system for proving correctness of nondeter-
ministic safety specifications. Technical report, Computer and Intelligent

Systems Laboratory, GTE Laboratories Inc., 1989.

[Sis89b A.P. Sistla. On verifying that a concurrent program satisfies a nondeter-

ministic specification. Information Processing Letters, 32(1):17-24, July
1989.

[Sta88] E. Stark. Proving entailment between conceptual state specifications.
Theoretical Computer Science, 56:135-154, 1988.

fVar87] M. Vardi. Verification of concurrent programs: The automata-theoretic
framework. In Proc. Symp. on Logic in Computer Science. IEEE, 1987.

19

